Forestry: Measuring nature using the power of DNA
Published: 12th April 2022
What gets measured, gets managed and until now, biodiversity has had a measurement problem. Stefanie Kaiser of green tech company NatureMetrics outlines how DNA-based methodologies can open the path to robust biodiversity assessments at scale.
Triggered by a powerful combination of recent extreme weather events, a ‘return-to-nature’ sentiment in society during lockdown, media attention around COP26 and the release of the Dasgupta Report on the Economics of Biodiversity, the penny has eventually dropped – both the climate and nature emergency have to be addressed, and quick. Governments and private businesses have to change their mindset and start seeing ‘nature’ as the fundamental resource our economy is built on. Basically, environmental costs and benefits need to make their way into corporate balance sheets.
A symptom of this trend, in particular in the forestry and wider land use sector, has been a striking interest in nature-based solutions and carbon markets; within the Confor membership, several new businesses have started dedicated carbon forestry ventures in the last few years. Land agents have reported a rise in the value of natural assets overall, which is reflected in soaring sales prices for not only commercial woodlands but also land suitable for afforestation or peatland restoration. Simon Hart of John Cleggs & Co says “even poor ground in Scotland is now selling at £5000/ha and more, which is more than treble values seen in the recent past”.
For climate change mitigation, more or less robust market-based incentives in the form of carbon credit schemes exist, and National net zero strategies provide a strong framework and pull for companies to take tangible climate action.
However, climate change and the deterioration of nature and biodiversity are strongly interlinked. In the last six months, many in the business and finance community have woken up to the need to monitor impacts on nature. Biodiversity regulations and certification requirements are likely to tighten resulting in the need for robust and scalable metrics.
Opportunities for Biodiversity Monitoring in the Forestry Sector
There are many ways that molecular methods can be used to complement conventional monitoring methods.
1. Assess Soil Health
Understanding differences in soil fauna, bacteria and fungi can give an idea of the effect of land management on ecosystem health and resilience. NatureMetrics currently focuses on providing data on composition and richness, rather than on long lists of species, for the assessment of bacteria, fungi and soil fauna from soil samples.
2. Compare impacts of management regimes and forest types
This can be useful to manage reputational risk, to inform grant or certification applications or to assess the effectiveness of new treatment or management regimes. It can also compare differences in land management such as:
3. Detect specific vulnerable, invasive or elusive species
eDNA is a great tool for detecting the presence or absence of a particular species. This might be required for diverse certification and permit audits, when dealing with Sites of Special Scientific Interest in response to eNGO campaigns. Elusive or cryptic species can also be easier and more effective to detect using molecular methods, compared to conventional ecological surveying techniques. For the detection of specific species, molecular and traditional methods can complement each other, depending on species type and ecology. Many priority species such as mammals, birds and amphibians are currently only detected from water samples, but detection from soil samples is currently in development.
4 Data for biodiversity KPIs
Currently, eDNA-based monitoring methods can provide the data that can inform the development of biodiversity indicators and metrics: For impact reporting and monitoring; For accessing grant funding or ‘green’ finance and for emerging biodiversity markets.
5. Assess environmental impact of operations
Pesticides, fuel residues or machinery lubricants can enter nearby streams or lakes and potentially have a negative impact on water biodiversity. eDNA biodiversity data and metrics from water samples can give clarity on environmental impact and change over time.
6. Pest detection
Currently, insect or soil samples can be DNA tested to detect key tree pests and diseases on site, for example Ips typographus, Emerald ash borer or fungal pest species. There is also potential to develop DNA-based rapid detection kits for a variety of pest species; this could enhance and calibrate existing plant health monitoring frameworks and remote sensing methods.